Course
Selected Topics in Machine Learning Optimization, Computer Vision and Networks
SOMOS
EDUCACIÓN
CONTINUA

Objectives
- Show computer vision applications to healthcare systems and generative models.
- Explain basic concepts in network science and graph theory and its applications to machine learning over networks.
- Describe the distributed optimization problem and consensus-based methods for decentralized machine learning.
Audience
Methodology
Conten
- Network science
- Spectral graph theory
- Label propagation
- Graph neural networks
- Basics of optimization
- The consensus problem
- Distributed learning
- Applications
- Neural networks in vision (overview)
- Texture and style synthesis
- Generative image models
- Neural rendering
- Networks
- Distributed Optimization
- Computer Vision
- Invited Speakers Symposium
- Graduate school in the US
Conferencistas
Cesar A. Uribe is the Louis Owen Jr. Assistant Professor at the Department of Electrical and Computer Engineering at Rice University. He received the M.Sc. degrees in systems and control from Delft University of Technology, in The Netherlands, and in applied mathematics from the University of Illinois at Urbana-Champaign, in 2013 and 2016, respectively. He also received the PhD degree in electrical and computer engineering at the University of Illinois at Urbana-Champaign in 2018. He was a Postdoctoral Associate in the Laboratory for Information and Decision Systems-LIDS at the Massachusetts Institute of Technology-MIT until 2020 and holds a visiting professor position at the Moscow Institute of Physics and Technology. His research interests include distributed learning and optimization, decentralized control, algorithm analysis, and computational optimal transport.
Guha Balakrishnan grew up in the towns of East and South Brunswick, New Jersey. In 2011, I received my B.S. degrees in Computer Science Engineering and Computer Engineering from the University of Michigan, Ann Arbor. I then went back east to MIT, where I completed my M.S. in 2013 and Ph.D. in 2018 in CSAIL, under the supervision of John Guttag and Frédo Durand. After the PhD, I was a postdoctoral researcher in Bill Freeman’s group at MIT from 2018-2020 and a scientist in AWS from 2020-2021 working on fairness and accountability of AI systems.
4% por pronto pago: Este descuento es el único acumulable y aplica si pago es realizado un mes antes de iniciar el programa.
10% por ser egresado o estudiante (activo) en pregrado o posgrado de la Universidad Javeriana.
10% por afiliación a la caja de compensación Cafam.
15% para grupos de 3 a 5 participantes en el mismo programa.
20% para grupos de 6 participantes en el mismo programa y en el tercer diplomado realizado consecutivamente.
Apertura y fecha de inicio: la apertura y la fecha de inicio del
programa dependerá del mínimo número de inscritos,
establecido por la Universidad.
Certificación: se otorgará certificación a quien haya
cumplido como mínimo con el 80% de las actividades
programadas en el aula.
Forma de pago: efectivo, cheque de gerencia, tarjeta de
crédito (recibimos todas las tarjetas, cuenta de cobro).
Válido para Colombia:
**Art. 92 Ley 30 de 1992 - Las Instituciones de
Educación Superior no son responsables del
I.V.A.
**Numeral 6 del Art. 476 Estatuto Tributario
(ET) - Servicios excluidos del impuesto sobre
las ventas.